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Abstract. We give a simple proof of Bourgain’s theorem on the singularity of Ornstein maps.

Setting and proof. Let (m;), (¢;) be a sequence of positive integers, and let (€2, A, P) be the probability
space associated to Ornstein construction, that is,
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where U}, is the uniform measure on { —tj, Lt }pj_l_

We want to prove that for almost all w € ), the spectral type p,, of the rank one map T, is singular.

Recall that pu,, is the weak-star limit of the following sequence of probability measures
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where X is the Lebesgue measure and for each j € N*,
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We further assume that the sequence (m;) is unbounded. Therefore, by Theorem 5.2 in ”Calculus of

"1 combined with the uniform integrability of the sequence H;V:1 |Pj(w, z)|, we
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have

We further have

by the classical central limit theorem combined with the uniform integrability of the sequence (|P;(w, 2)|);>0-
We thus get
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Whence

and the proof is complete.

*The reader need not be familiar with Ornstein construction neither the spectral theory of dynamical systems.
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